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Abstract
In the paper, an experimental and FEM verification of early obtained, internal
inductance formula for plunger type magnet is performed. A new, faster, method for
the calculation using Mathcad is substantiate and recommended.

1. - INTRODUCTION

In [1] a formula for internal inductance of plunger-type
magnet is deduced, using the method of power
approximation of boundary conditions in 2D connected
regions. The proposed formula, which takes into
consideration the core saturation, the parasite air gaps
and the variation in large limits of the working gap, is
difficult to apply because of the function
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containing an improper integral.

In the paper, a method for the evaluation of this function, 
using Mathcad, is proposed and two verifications of the
formula are performed: using a finite element method
and experimental determinations of the total inductance
for large range of the gap variation. The experimental
values are compared with the sum of internal inductance,
calculated with formula given in [1] and external
inductance calculated with finite element method
(Quickfield and femm).

2.-CALCULATION OF ),( zF

The values of was taken using the recommendations
given in [1]. The recommendations from [2] can be also
used.

The function (1) contain an improper integral, difficult to 
calculate, but it can be expressed in terms of Bohmer
integrals (or generalized Fresnel integrals) [3]:

Fig. 1 Plunger - Type Magnet
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For 0x we have evidently
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We will consider also the complementary integrals
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They satisfy the equations: 
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For large x, the following equations can be useful [3]:
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Here is used the Pochhammer symbol
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Using the substitution xtzxtz dd  to change the 
integration variable t with x in (1), the function F can be
expressed in terms of the complementary integrals (4)
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The complementary integrals have the following series
representation [3]:
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The above series are alternating and the truncation error
is less than the first neglected term. For 1x , the error,
for (m + 1) taken terms, is less than 
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For error less than 10-12 there are enough 7 terms. To
avoid the calculation of improper integrals we propose to 
calculate the complementary integrals (4), using
Mathcad, as follows:
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where
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The integrals in equations (12) are not improper and can
be easy calculated with good precision by Mathcad. The
values of the function F calculated with (9), (12) and
(13) are given in fig. 2.

Fig. 2. The function F( , z)

The function F can be easy calculated also using the
equations (6). Replacing (6) in (5) and (9) we obtain:

)1,(
2

cos)(),(
1

zQz
z

zF (14)

The last term, in according with (7) can be written as
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For z >10 it can be calculated with an absolute error less 
than 10-12, if M = 5.
The values of )1,(zQ are given in fig. 3. We can
see that for large z this term can be neglected. In the
program given in appendix of [1] this term is neglected,
for z larger than 90. This corresponds to an absolute
error smaller than 10-4.

Fig. 3. The function (15)

3.  INTERNAL INDUCTANCE

The inductance corresponding to the magnetic flux in the 
two windows of the magnet (fig. 1) according to [1], can
be written in the form
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In this formula the coil cross-section is considered to
have the window dimensions: bbaa cc , .
The equivalent air gap, using the notation from fig. 1
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The magnetic field in varies portions of the magnet can
be approximated neglecting the leakage flux: 

3...1;
e

1
1

i
Iw

H
c
u

H
c

u
HH i

ii (18)

The coefficients ai and bi have the expressions [1]:
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The interpolation coefficients can be selected following
the recommendations  [1]:
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or, for larger gaps, the recommendations [2]:
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The proper values result from the equations
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The Fourier coefficients are
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The constant G from the equation (16) is given in fig. 3
from [1] and can be calculated, taking 10 terms in the
equation:
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4. FEM AND EXPERIMENTAL VERIFICATION

For FEM and experimental verification the
electromagnet shown in fig. 1 and 4, with the dimensions 
(in mm) given in the next table, was used

a b c u1 u2 u3
70 17.75 7.25 15 9 15

g 1 w ac bc R
15.3 0.15 2350 65 13.8 100

where g is the core thickness, ac, bc are the coil
dimensions, w the number of turns and R the domain
radius for external inductance calculation. The relative
permeability was considered 1000 for all the portions of
the core.

In the next table, are given the 2D magnetic field energy
(per 1 m length) Wext in two lateral sides of the coil up to
a distance R = 100 mm and the magnetic energy Wint in
the two magnet windows, both calculated by Quickfield
program for a apparent current density of 1 A/mm2, i.e. a 
coil current
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In next two columns the corresponding external and
internal inductances in H/m are given, calculated with
the formulas
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and in the last column the theoretical values calculated
with the formula (16).

FEM (QFLD, FEMM) (16)
Wext Wint L ext L int Lint

[mm] [J/m] [J/m] [H/m] [H/m] [H/m]
2.5 0.183 2.355 5.018 64.666 66.211
5 0.173 1.564 4.761 42.941 43.951

10 0.153 1.019 4.209 27.987 28.856
20 0.126 0.654 3.459 17.955 17.228
40 0.066 0.251 1.819 6.882 7.194

We can observe in fig. 7 a good agreement with the FEM 
data (differences less than 4.5%).

Using the external inductances determined with FEM
and the determined by FEM and calculated with equation 
(16) internal inductance, the total coil inductance was
calculated, considering for internal inductance the core
thickness g and for external inductance the rest of mean
turn half length:
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In the last table, these values are compared with
experimental data obtained for feeding voltage U = 50 V, 
50 Hz and the currents I given in the table, considering
the coil resistance Rc = 23.3 :
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The larger difference between the experimental data and
calculated inductances for small air gap can be explained 
by the altered shape of the plunger which is not flat
faced, lake in fig. 1 and has also a T shape instead of I.
The smaller plunger area gives a smaller inductance.
This explanation is supported by the good agreement of
the formula (16) results with the FEM data.

I totL totL totL totL / totL
[mm] [A] [H] [H] [H]
2.5 0.158 1.005 1.214 1.238 1.232
5 0.193 0.821 0.870 0.885 1.078

10 0.251 0.630 0.617 0.630 1
20 0.377 0.416 0.403 0.418 1.007
40 0.814 0.181 0.187 0.191 1.057

For gaps larger than 5 mm the differences are smaller
than 8 %, which can be considered acceptable.

Fig. 4 The experimental model

196



Fig. 5. External magnetic field for the gap 20 mm

Wext = 0.126 J/m, w I = 898 A

1352 nodes, 2547 elements

Fig. 6 Internal magnetic field for the gap 20 mm

w I = 898 A, Wint = 0.654 J/m

1444 nodes, 2730 elements

Fig. 7. Internal inductance calculated with (16) (line) and 
determined by FEM (x s)

5.  DELPHI PROGRAM

A user-friendly Delphi program (called IPTM.exe) was
built by the last co-author, which determine very fast the
constant G and internal inductance Lint using the
formulas (16) and (24) and given in [1] algorithm for F
function calculation. 
The program calculates also the vector magnetic
potential for given points in the two domains: I coil
cross-section and II the air gap. The results can be
stored in text files and the graphics in bmp. Files. Four
(color) menu pages offered by this program are shown in 
the next several figures.

Fig. 8. Delphi program main menu
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In fig. 8 the dimensions of the experimental model are
introduced.

Fig. 9. The parameter
a

G  as a function of 
a

for four ratio of window dimensions

In the figure above the constant G is calculated for four
shapes of the rectangular window.

The time need to calculate the graphics for G is around 4 
seconds, for a computer with 800 MHz processor. The
next menus are almost instantaneous.

Fig. 10. The internal inductance Lint as a function of the gap

The next menu calculates the vector magnetic potential
in the two domains (core window and air gap), i. e. the
magnetic flux per 1 m depth, between the zero flux line
(A = 0 in fig. 6) and the selected point, in [Wb/m].

Fig. 11. The magnetic vector potential values

6 - CONCLUSIONS

1. The formula (16), considering the coil cross-section
equal to window dimensions, gives the values of the
internal partial inductance of plunger-type electromagnet
which are in good agreement with the values obtained
using FEM method (differences less than 4.5 %).

2. For total magnet inductance evaluation, two values of
linear inductances can be considered: internal inductance 
Lint, which must be multiplied by the core thickness g
and the external inductance Lext, which must be
multiplied by the rest of the mean turn of the coil length
(27).
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