
Improving of 2-D FEM Modeling of a SMES    
Device Using the Response Surface Methodology       

Applied on 3-D FEM Modeling 
 

Alin-Iulian Dolan and Florian Stefanescu 
University of Craiova, Faculty of Electrical Engineering, Craiova, Romania, adolan@elth.ucv.ro, florian@elth.ucv.ro  

 
 

Abstract — The paper proposes an improving of earlier 2-D 
FEM modeling of a Superconducting Magnetic Energy 
Storage (SMES) device with modular toroid coil using the 
response surface methodology (RSM) applied on 3-D FEM 
modeling. Usually, RSM problems use polynomial models of 
first- or second-order (regressions) that approximates the 
value of response for any combination of the influencing 
factors. The earlier 2-D model of SMES device created in 
FEMM software is based on the assumption of the equality 
between the inductances of the complete circular cross sec-
tion toroid and of the rectangular cross section toroid, 
providing an approximation for the depth of planar model 
which does not take into account the leakage magnetic flux. 
Therefore a 3-D model of real geometry was realized using 
ANSYS software to improve this approximation. Imposing 
the equality of the magnetic field energies in 2-D and 3-D 
simulations, a new value for depth of 2-D planar model is 
derived for which are proposed two polynomial models of 
first order without interactions and with interactions based 
on two factors characterizing the geometric torus shape: the 
coil inner diameter ratio and the coil thickness ratio. The 
results based on a few 3-D numerical experiments show that 
using a model with interactions is justified. The application 
of analysis of variance (ANOVA) and the computation of 
some adjusting coefficients prove that the both models can 
be considered of best quality, since there is more than 99% 
chance that they explain the variations in the response. The 
models indicate an underestimation of the depth of the 2-D 
planar modeling in the old approximation and consequently, 
of the magnetic field energy, for SMES devices of great di-
mensions, when the leakage magnetic flux increases. 

Keywords—SMES; FEM; DOE; RSM; ANOVA 

I. INTRODUCTION 
The design and the optimization of the Superconducting 

Magnetic Energy Storage (SMES) devices is a topic of 
permanent interest [5] - [15]. 

The numerical simulations help to preview the best so-
lutions with minimum costs. In [13] and [16] were created 
2-D and 3-D numerical models of a 21 kJ modular toroid 
coil system, using finite element method (FEM) in FEMM 
and ANSYS software. The results shown that a 2-D model 
under well-chosen assumptions can be as accurate as a    
3-D model of the real geometry, which is much more ex-
pensive in terms of work time and hardware resources. 

In [15] was established a geometric criteria for pre-
sizing of toroidal coil for magnetic energy storage in order 
to optimize the storage capacity, choosing two geometric 

parameters. Based on analytical calculation, correlations 
between different dimensions have been derived. 

In [17] and [18] are proposed optimized solutions of 
modular toroid coil geometry of a 21 kJ SMES device 
using design of experiments (DOE) and FEM. 

In this paper is proposed an improving of the earlier    
2-D FEM modeling of the SMES device with modular 
toroid coil using the response surface methodology (RSM) 
applied on 3-D FEM modeling.  

In the first part is presented some basic concepts in 
RSM concerning the first degree polynomial models, the 
ways of estimation of their coefficients and the technique 
of analysis of variance (ANOVA) with adjusting coeffi-
cients as tools for testing of the validity of the models and 
for appreciating their quality. 

In the second part, two polynomial models of first-
degree are proposed for the depth of 2-D planar model, 
based on equivalence of magnetic field energies between 
2-D and 3-D models. The ANOVA is applied and some 
adjusting coefficients are computed for statistical tests of 
the models.   

II. RESPONSE SURFACE METHODOLOGY 

A. Basic Concepts in RSM 
The response surface methodology (RSM) is a useful 

technique for modeling and analysis of the response of a 
system influenced by a set of independent factors. The 
design of experiments (DOE) is essentially based on the 
creation and exploitation of the models of the response 
consisting of analytical relationship describing the varia-
tions of the response versus to the variation of the factors. 
[1] - [4]. 

Usually, the RSM problems use polynomial models of 
first- or second-order derived as results of a series of ex-
periments with different values for the factors. For a set of 
k factors, the model function (called regression) Ymod   
approximates the value of response Y  for any combination 
of the factors by matrix-form relationship  

 xx ⋅= )()(mod fY , (1) 

where  T
21 )( kxxx=x  (2) 

is the coordinates vector of an experience point P,  

 )1()( 22
121211 kkkk xxxxxxxxxxf =x  (3) 
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is a line vector whose elements contain the values of the k
factors and theirs possible combinations by mutual multi-
plications up to second order and 

T
11211210 )( kkkkk bbbbbbbb=  (4) 

is the vector of the correspondents coefficients, with p
elements.  

1) The first-order model without interactions does not 
take into account the interaction between the factors. For 
two factors denoted x1 = x and x2 = y, we have p = 3 and 

T)( yx=x ,   )1()( yxf =x ,   T
210 )( bbb= . (5) 

The values of the model function can be also written as 

bxx ⋅+= T
0mod )( bY ,   T

21 )( bb=b . (6) 

The coefficient b0 is the value of model function in the 
origin point (0 0 … 0)T and the vector b indicates the di-
rection of the greatest increase of the model function. 

2) The first-order model with interactions takes into   
account the interactions between the factors. For two fac-
tors in this case p = 4 and 

)1()( xyyxf =x ,   T
12210 )( bbbb= . (7) 

B. Estimation of Coefficients of Polynomial Models 
For a series of N experiments, the value of the model 

function in any experience point Pi (xi) = Pi (xi, yi) is 

NifY ii ≤≤⋅= 1,)()(mod xx . (8) 

The vectors Y and Ymod bring together all the responses 
respectively their models and a new matrix form relation-
ship can be written [4] 

( ) T
1 )()( NYY xxY = , (9) 

( ) XxxYmod ⋅== T
mod1mod )()( NYY , (10) 

where ( ) T
1 )()( Nff xxX =  (11) 

is the design matrix built from the N experience points. 
If N = p experiences are performed, all the p coeffi-

cients can be uniquely determined by the system of linear 
equations 

XY ⋅= . (12) 

The model passes exactly through the experience points 
and the matrix X is saturated (square). 

If N < p, the above system is underdetermined, so one 
must always have N p.  

For the most common situations where N > p, the sys-
tem (12) is overdetermined and there is enough infor-
mation in the experimental data to estimate a unique value 
for  such that the model best fits the response. In this 
case the model cannot pass exactly through the experience 
points, but it commits an adjustment error in each of these 
points.  

So there is an error vector  (residue) nonzero. The co-
efficients must be estimated by the minimization a   given 

criterion. The method of least squares is the best known 
and most used in the polynomial approximation.  

The matrix-form relationship linking the response and 
the model function based on the estimation vector ˆ is  

XY +⋅= ˆ . (13) 

The objective is the calculation of vector ˆ  such that 
the vector  to be minimized. The least squares criterion 
translates this requirement by an equivalent objective                       

( ) min()(
1

2
mod

1

2
i →−=

==

N

i
ii

N

i
YY xx  (14) 

The estimation vector ˆ  results 

( ) YXXX ⋅⋅⋅=
− T1Tˆ  (15) 

C. Analysis of Variance of the Model and Adjustement 
Coefficients 

The ANOVA can be used to test the validity of the 
model function based on the relationship [4] 

YYYY modmod ⋅+⋅=⋅ TTT . (16) 

The left terms, called the total sum of the squares (SST), 
is composed of the sum of squares due to regression (SSR) 
and of the sum of errors squares (SSE), so 

SSESSRSST += . (17) 

The variances (the mean squares) of the responses, re-
gression and residues are deducted dividing the sums of 
squares by the corresponding degrees of freedom (DOF) 

N
SSTMST = ,   

p
SSRMSR = ,   

pN
SSEMSE

−
=  .(18) 

In about all cases, the model contains a constant term 
which corresponds to coefficient b0, which is the average 
of responses 

YY
N

b
N

i
i ==

=1
0 )(1 x ,   ( ) TYY=Y  (19) 

Since this component is of no interest in ANOVA, it is 
usually suppressed. Consequently, the regression DOFs 
and total DOFs decrease by 1. Thus 

10 −
=− N

SSTMST ,   
10 −

=− p
SSRMSR . (20) 

Is then performed the Fisher-Snedecor test by 
calculating the ratio Fobs: 

MSE
MSRF =obs    or   

0

0
obs

−

−=
MSE
MSRF . (21) 

The MSR (or MSR-0) can be considered of the same or-
der as the MSE (or MSE-0) if the ratio Fobs is less than a 
statistical threshold. The null hypothesis H0 means that     

 = 0. Under this assumption, Fobs is an observed value of 
a variable F of Fisher-Snedecor type, with p (or p – 1) and 
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(N – p) DOFs. The hypothesis H0 must be rejected at level 
 when the probability P(F Fobs) .  

The quality of a model can be evaluated by adjustments 
coefficients: 

1) Global variance of regression ( 2) can be estimated 
by MSE. The model is the better fit to the experimental 
data as MSE is low 

MSE=σ2ˆ . (22) 

2) Coefficient of determination (R2) is the ratio of the 
variance explained by the regression and the variance of 
responses, both corrected by the average value Y . 

m

mm

m

m
TT

TT
2

−

−−

−

− −==
⋅−⋅

⋅−⋅=
SST

SSESST
SST
SSRR

YYYY
YYYY modmod . (23) 

This coefficient takes values between 0 and 1. A value 
close to 1 indicates a good model with a very good predic-
tive power. 

3) Adjusted coefficient of determination (Ra
2) has the 

same signification as R2 but it is defined in relation to co-
rresponding DOFs 

1

1
m

mm

2

−

−
−

−=
−

−−

N
SST

pN
SSE

N
SST

Ra . (24) 

It can take negative values if the R2 is close to 0. Due to 
the consideration of DOFs one always has Ra

2 < R2. 
The ANOVA and the adjustment coefficients allow 

evaluating the quality of the model. These tools require an 
additional cost of (N – p) experiments compared to the 
calculation of a model requiring p experiments. There is 
therefore a compromise: possibility to evaluate the quality 
of the model or minimization of the effort for model cal-
culation. 

III. RSM APPLIED ON SMES DEVICE MODELING 

A. SMES Geometry Description and Loads 
The analyzed SMES device is shown in Fig. 1 [18]. For 

the shape of the coil, a modular toroid coil was chosen, 
consisting of solenoids connected in series and symmetri-
cally arranged.  

Each solenoidal coil is realized by NbTi superconductor 
(with Cu matrix) whose operating temperature is low (4.2 
K), using the liquid helium with all the implications of this 
extremely low temperature [13], [15]. 

The basic dimensions are the mean diameter of modular 
toroid D = 142 mm, the coil inner diameter d and the coil 
thickness g. The number of solenoid modules is n = 8 and 
the cross section of the coil is S = 128 mm2. According to 
specifications presented in [14], the radius of supercon-
ducting wire r = 0.2 mm and the thickness of carcass        
p = 4 mm.  

The current density in superconductor was taken            
j = 381.548 MA/m2, corresponding to a current I = 75 A. 
According to specifications presented in [11], the critical 
current density of NbTi superconductor at T = 4.2 K and 
Blim = 7 T is jc = 530 MA/m2. 

Fig. 1. Geometry of modular toroid coil [18]. 

Two main parameters characterize the geometric torus 
shape: the coil inner diameter ratio  and the coil thick-
ness ratio .  

They were chosen in [15] to optimize the storage capa-
city of a SMES device with toroidal coil 

D
g

D
d =β=α ,  . (25) 

The study domain is limited by a few constraints on 
position (Fig. 2). 

≤βα
≤βα
β≤β≤β
α≤α≤α

0),(
0),(

diam

dist

maxmin

maxmin

g
g

, (26) 

where α≤=α 035.0min  (27) 

is in accord with manufacturing possibilities [14], ( max, 
min and max are free), 

),(),( mindist βα−=βα eeg  (28) 

does not allow a distance e between two carcasses of sole-
noids less than emin = 5.425 mm and 

maxdiam ),(),( DEg −βα=βα  (29) 

that does not allow a total diameter of the modular toroid 
coil greater than Dmax = 230 mm [14] 

Fig. 2. Feasible domain defined by the constraints on position and the 
experience points (blue). 
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B. Modeling of depth of 2-D Planar Model by RSM 
The numerical simulations can be considered virtual 

experiments in which the studied object does not physical-
ly exist but its physical properties can be numerically cal-
culated. The virtual experiments are exempted from 
measurement errors being governed only by numerical 
errors (type of solving method, mesh characteristics, 
mathematical formulation, accuracy of numerical data). 

The earlier 2-D model created in FEMM software    
describes a rectangular cross section toroid [13], [16]. 
Under the assumption of the equality between the induc-
tances of the complete circular cross section toroid and of 
the rectangular cross section toroid, the depth parameter 
describing the depth of the planar model was derived as 

α⋅=⋅= 772.108766.0 ddepth . (33) 

The equivalence of the inductances does not take into 
account the leakage flux. Therefore a 3-D model of real 
geometry (Fig. 4) was realized using ANSYS software to 
improve the approximation (33). 

The magnetic field energy as result of 2-D simulation 
Wm_2-D is computed by multiplying the magnetic field 
energy per depth unity wm_2-D by the parameter depth

depthwW ⋅= D-m_2D-m_2 . (34) 

Imposing the equality of the magnetic field energies in 
2-D and 3-D simulations, a new value depth’ for depth of 
2-D planar model parameter can be derived 

hdept
depth

W
hdeptwW ′⋅=′⋅= D-m_2

D-m_2D-m_3 , (35) 

D-m_2

D-m_3

W
depthW

hdept
⋅

=′ . (36) 

Two polynomial models of first order (linear 
regressions) without interactions and with interactions are 
proposed for depth’ parameter based on factors  and 

β+α+=βα 2101 ),(' bbbdepth , (37) 

αβ+β+α+=βα 122102 ),(' bbbbdepth . (38) 

Given the breadth of 3-D simulation, reaching to a 
working time up to hours compared to a working time of 
seconds order, the number of the numerical experiments 
was limited to N = 10 for different levels of the factors 
and . The set of chosen experiments form a Simplex Lat-
tice Design (P1 – P6) augmented with the axial points (P7 – 
P10) [1] for a better coverage of the study domain (Fig. 2). 

Fig. 3. Distribution of magnetic flux density for experience point P7,       
2-D FEMM,  = 0.142558,  = 0.125433. 

C. Numerical simulations 
The perfect diamagnetism was simulated by conside-

ring the value of relative permeability of the superconduc-
tor close to zero [13]. The value μr = 10-7 is enough small 
for expulsion of magnetic field from superconducting do-
main (Fig. 3). Based on the symmetries, the sixteen-th part 
of the geometry was modeled to increasing the accuracy 
of the results. The mesh was realized using about 30000 
nodes and 60000 triangular elements.  

Commands files have been created using LUA scrip-
ting language. The zero tangential component of magnetic 
field strength was considered for the edges forming a 
sharp angle and zero magnetic vector potential, for the 
curve edge. 

The MVP-edge based formulation has been employed 
for the analysis of static magnetic field of the 3-D coil, 
using the same simulated diamagnetism. Based on the 
symmetries, the thirty-two-th part of the geometry was 
modeled [16]. Commands files have been created using 
APDL (ANSYS Parameter Design Language). The mesh 
was realized using about 500000 nodes and 400000 tetra-
hedral elements, being limited by hardware resources. The 
flux normal conditions have been considered for the sides 
forming a sharp angle and the flux parallel conditions, for 
the others (Fig. 4). 

IV. RESULTS AND CONCLUSIONS

The results of the N numerical experiments are 
presented in Table I. The estimations of the vectors of 
coefficients for the two models are 1

ˆ  and 2
ˆ  (39). The 

results of ANOVA and the adjustment coefficients are 
presented in the Tables II–IV. 

Fig. 4. Distribution of magnetic flux density for experience point P7,       
3-D ANSYS,  = 0.142558,  = 0.125433. 
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TABLE I. 
RESULTS OF 3-D NUMERICAL EXPERIMENTS

Experience 
points

depth’ [mm]

P1 0.035000 0.024573 4.304607 
P2 0.035000 0.140000 6.332778 
P3 0.035000 0.250000 7.400906 
P4 0.196337 0.183522 32.354933 
P5 0.357674 0.087537 48.457262 
P6 0.196337 0.034660 24.789312 
P7 0.142558 0.125433 23.737578 
P8 0.088779 0.077000 13.320104 
P9 0.088779 0.187680 16.763830 
P10 0.250116 0.106485 36.884541 

TABLE II. 
ADJUSTMENT COEFFICIENTS

Model 1 Model 2
R2 0.987379 0.996445 
Ra

2 0.983773 0.994668 
σ̂ [mm] 1.856123 1.063967 

TABLE III. 
RESULTS OF ANOVA FOR THE MODEL 1 (WITHOUT INTERACTIONS) 

Source of 
variation DOFs 

Sum of 
squares 
[mm2] 

Mean sum 
of squares 

[mm2] 
Fobs

Regression   3-1=2   1886.728 943.364 273.820 
Residue 10-3=7     24.116     3.445 Probability 
Total 10-1=9 1910.844 212.316 0.99999977 

TABLE IV. 
RESULTS OF ANOVA FOR THE MODEL 2 (WITH INTERACTIONS) 

Source of 
variation DOFs 

Sum of 
squares 
[mm2] 

Mean sum 
of squares 

[mm2] 
Fobs

Regression   4-1=3 1904.052 634.684 560.662 
Residue 10-4=6       6.792     1.132 Probability 
Total 10-1=9 1910.844 212.316 0.99999990 

=
−

=

340.276
816.2
919.109
093.1

ˆ,
237.26
797.137
402.1

ˆ
21  (39) 

In Fig. 5 and Fig. 6 are presented the linear regressions 
without and with interactions for depth of 2-D planar 
model compared to (33) and to numerical experiments. It 
is found that in the both cases the factor  has an 
important influence, as the approximation (33) suggests. 
The model 2 indicates a strong interaction between the 
factors, expecting significant variations in the directions 
and  in the same time, so that using a model with 
interactions is justified. 

The same conclusion would be given by the study of 
the variation of R2 between the modes. 

The probability that the variance due to the regression 
will be significantly different from the residues is   
0.99999977 for the first model and it increases to 
0.99999990 for the second. The models can be considered 
of best quality, since there is more than 99% chance that 
they explain the variations in the response. 

The both models indicate an underestimation of the 
depth of the 2-D planar modeling and consequently, of the 
magnetic field energy, for SMES devices of great dimen-
sions, when the leakage flux increases.  

Fig.5. Depth of 2-D planar model: (33) (gray), 3-D numerical experi-
ments (blue points) and linear regression without interactions (color). 

Fig.6. Depth of 2-D planar model: (33) (gray), 3-D numerical experi-
ments (blue points) and linear regression with interactions (color). 

For the lowest values of the factor  or of the factor , 
the model with interactions agrees enough well with (33). 
The lowest values for  imply the invariance of depth pa-
rameter regardless the values of . That means that the 
magnetic field energy of SMES devices of little 
dimensions do not depend on the coil thickness.  
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