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Abstract — The paper proposes the determination of the 
inductance of a Superconducting Magnetic Energy Storage 
(SMES) device with modular toroid coil based on a new 2-D 
FEM modeling using the response surface methodology 
(RSM) applied on 3-D FEM modeling. An earlier 2-D FEM 
modeling of a SMES device created in FEMM software is 
based on the assumption of the equality between the induc-
tances of the complete circular cross section toroid and of 
the rectangular cross section toroid, providing an approxi-
mation for the depth of planar model which does not take 
into account the leakage magnetic flux. Therefore a 3-D 
model of real geometry was realized using ANSYS software 
to improve this approximation. Imposing the equality of the 
magnetic field energies in 2-D and 3-D simulations, a new 
value for depth of 2-D FEM planar modeling is derived as 
polynomial regression of second order of the 3-D results, 
based on two factors characterizing the geometric torus 
shape: the coil inner diameter ratio and the coil thickness 
ratio. The application of analysis of variance (ANOVA) and 
the computation of some adjusting coefficients prove the 
descriptive and predictive power of this model. The induc-
tances of different configurations of SMES device derived 
from the new 2-D FEM modeling are compared to those 
based on the earlier 2-D FEM modeling and on the 3-D 
FEM modeling. The results indicate an underestimation of 
the depth of the earlier 2-D FEM planar modeling and con-
sequently, of the magnetic field energy and of the inductance 
for SMES devices with large inner diameter, when the leak-
age magnetic flux increases. The proposed model can im-
prove the results of optimizations of the SMES device per-
formed in previous papers. 
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I. INTRODUCTION 

The design and the optimization of the Superconducting 
Magnetic Energy Storage (SMES) devices is a topic of 
permanent interest [1] - [8], many studies being deve-
loped during a research project [7]. 

The numerical simulations help to preview the best so-
lutions with minimum costs. In [6] and [9] were created  
2-D and 3-D numerical models of a 21 kJ modular toroid 
coil system, using finite element method (FEM) in FEMM 
and ANSYS software. The results shown that a 2-D model 
under well-chosen assumptions can be as accurate as a    
3-D model of the real geometry, which is much more ex-
pensive in terms of work time and hardware resources. 

In [8] was established a geometric criteria for presizing 
of toroidal coil for magnetic energy storage in order to 
optimize the storage capacity, choosing two geometric 

parameters. Based on analytical calculation, correlations 
between different dimensions have been derived. 

In [10] and [11] are done optimized solutions of modu-
lar toroid coil geometry of a 21 kJ SMES device using 
design of experiments (DOE) and FEM. 

In [12] is proposed the improving of the earlier 2-D 
modeling used in [6] by using polynomial regression 
models of first degree for the depth of planar modeling. 
This is based on equivalence of magnetic field energies 
between 2-D and 3-D simulations, using the response sur-
face methodology (RSM) applied on 3-D FEM modeling. 

The preoccupations to find a best modeling have been 
carried out and this paper proposes a new 2-D modeling 
based on a regression polynomial model of second degree 
for the depth parameter.  

In the first part are presented some basic concepts in 
RSM concerning the polynomial models, the ways of es-
timation of their coefficients and the technique of analysis 
of variance (ANOVA) with some adjusting coefficients as 
tools for testing of the validity of the models and for ap-
preciating their quality. 

In the second part is described the methodology of ob-
taining of the second order model for the depth of 2-D 
FEM planar modeling. Based on the new model, the in-
ductance for different configurations of the SMES device 
is determined and compared to those based on the earlier 
2-D FEM modeling and on the 3-D FEM modeling. The 
ANOVA is applied and some adjusting coefficients are 
computed for statistical tests.   

II.  RESPONSE SURFACE METHODOLOGY 

A. Basic Concepts in RSM 

The response surface methodology (RSM) is a useful 
technique for modeling and analysis of the response of a 
system influenced by a set of independent factors. The 
design of experiments (DOE) is essentially based on the 
creation and exploitation of the models of the response 
consisting of analytical relationship describing the varia-
tions of the response versus to the variation of the factors. 
[13] - [16]. 

Usually, the RSM problems use polynomial models of 
first- or second-order derived as results of a series of ex-
periments with different values for the factors.  

For a set of k factors, the model function (called regres-
sion) Ymod approximates the value of response Y  for any 
combination of the factors by matrix-form relationship  

 βxx ⋅= )()(mod fY , (1) 



where  T
21 )( kxxx K=x  (2) 

is the coordinates vector of an experience point P,  

 )1()( 22
121211 kkkk xxxxxxxxxxf KKKKK=x  (3) 

is a line vector whose elements contain the values of the k 
factors and theirs possible combinations by mutual multi-
plications up to second order and 

 T
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is the vector of the correspondents coefficients, with p 
elements.  

1) The first-order model without interactions does not 
take into account the interaction between the factors. For 
two factors denoted x1 = x and x2 = y, we have p = 3 and 

 T)( yx=x ,   )1()( yxf =x ,   T
210 )( bbb=β . (5) 

The values of the model function can be also written as 

 bxx ⋅+= T
0mod )( bY ,   T

21 )( bb=b . (6) 

The coefficient b0 is the value of model function in the 
origin point (0 0 … 0)T and the vector b indicates the di-
rection of the greatest increase of the model function. 

2) The first-order model with interactions takes into   
account the interactions between the factors. For two fac-
tors in this case p = 4 and 

 )1()( xyyxf =x ,   T
12210 )( bbbb=β . (7) 

3) Second-order models make appear quadratic terms 
and p = 6 

)1()( 22 yxxyyxf =x ,   T
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The values of the model function are deduced from ma-
trix form equation: 

 xBxbxx ⋅⋅+⋅+= TT
0mod )( bY  (9) 

where B is a quadratic matrix whose diagonal elements 
are the coefficients of the two-power terms and the others 
elements correspond to the terms of interactions between 
the factors 
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This model is only used in the RSM and it requires a 
reasonable number of experiments for its calculation. 

4) Greater than two order models imply an important 
number of experiments, an uncertain approximation and 
the difficulty to understand the model variations and to 
use the mathematical relationship. 

B. Estimation of Coefficients of Polynomial Models 

For a series of N experiments, the value of the model 
function in any experience point Pi (xi) = Pi (xi, yi) is 

 NifY ii ≤≤⋅= 1,)()(mod βxx . (11) 

The vectors Y and Ymod bring together all the responses 
respectively their models and a new matrix form relation-
ship can be written [13] 

 ( ) T
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 ( ) βXxxYmod ⋅== T
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where ( ) T
1 )()( Nff xxX K=  (14) 

is the design matrix built from the N experience points. 
If N = p experiences are performed, all the p coeffi-

cients can be uniquely determined by the system of linear 
equations 

 βXY ⋅= . (15) 

The model passes exactly through the experience points 
and the matrix X is saturated (square). 

If N < p, the above system is underdetermined, so one 
must always have N ≥ p.  

For the most common situations where N > p, the sys-
tem (15) is overdetermined and there is enough infor-
mation in the experimental data to estimate a unique value 
for β such that the model best fits the response. In this 
case the model cannot pass exactly through the experience 
points, but it commits an adjustment error in each of these 
points.  

So there is an error vector ε (residue) nonzero. The co-
efficients must be estimated by the minimization a given 
criterion. The method of least squares is the best known 
and most used in the polynomial approximation.  

The matrix-form relationship linking the response and 

the model function based on the estimation vectorβ̂ is  

 εβXY +⋅= ˆ . (16) 

The objective is the calculation of vector β̂  such that 
the vector ε to be minimized. The least squares criterion 
translates this requirement by an equivalent objective                       
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The estimation vector β̂  results 

 ( ) YXXXβ ⋅⋅⋅=
− T1Tˆ  (18) 

C. Analysis of Variance of the Model and Adjusting 
Coefficients 

The ANOVA can be used to test the validity of the 
model function based on the relationship [13] 

 εεYYYY modmod ⋅+⋅=⋅ TTT . (19) 

The left terms, called the total sum of the squares (SST), 
is composed of the sum of squares due to regression (SSR) 
and of the sum of errors squares (SSE), so 

 SSESSRSST += . (20) 



The variances (the mean squares) of the responses, re-
gression and residues are deducted dividing the sums of 
squares by the corresponding degrees of freedom (DOF) 
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In about all cases, the model contains a constant term 
which corresponds to coefficient b0, which is the average 
of responses 
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Since this component is of no interest in ANOVA, it is 
usually suppressed. Consequently, the regression DOFs 
and total DOFs decrease by 1. Thus 
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Is then performed the Fisher-Snedecor test by 
calculating the ratio Fobs: 
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The MSR (or MSR-0) can be considered of the same or-
der as the MSE (or MSE-0) if the ratio Fobs is less than a 
statistical threshold. The null hypothesis H0 means that     
β = 0. Under this assumption, Fobs is an observed value of 
a variable F of Fisher-Snedecor type, with p (or p – 1) and 
(N – p) DOFs. The hypothesis H0 must be rejected at level 
λ when the probability P(F ≥ Fobs) ≤ λ.  

The quality of a model can be evaluated by adjustments 
coefficients: 

1) Global variance of regression (σ2) can be estimated 
by MSE. The model is the better fit to the experimental 
data as MSE is low 

 MSE=σ2ˆ . (25) 

2) Coefficient of determination (R2) is the ratio of the 
variance explained by the regression and the variance of 
responses, both corrected by the average valueY . 
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This coefficient takes values between 0 and 1. A value 
close to 1 indicates a good model with a very good      
descriptive power. 

3) Adjusted coefficient of determination (Ra
2) has the 

same signification as R2 but it is defined in relation to co-
rresponding DOFs 
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It can take negative values if the R2 is close to 0. Due to 
the consideration of DOFs one always has Ra

2 < R2. 

4) Predictive Residual Sum of Square (PRESS) is de-
fined using the diagonal elements hii , 1 < i < N, of the Hat 
matrix  

 ( ) T1T XXXXH ⋅⋅⋅=
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This coefficient is not a measure of adjustment, but ra-
ther an estimation of the predictive power of the model. It 
can be used to compare the models between them. One 
always has PRESS ≥ SSE. 

5) Coefficient Q2 is very similar to R2, often called 
“predictive R2”  
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It usually varies between 0 and 1. It can be negative for 
very poor models. The values close to 1 designates 
properly-fitting to experiments models.  

The coefficients R2 and Q2 are thus two measures of 
goodness of fit: the first is an over-estimation while the 
second is an underestimation. R2 is descriptive, measuring 
the relationship between the model function and the     
response in the initial experience points, while Q2 is more 
predictive, measuring the ability of the model function to 
predict the response in unknown experience points. 

6) Distance of Cook (δ) 
In some cases, some values of the response may be   

aberrant even if their residues are not important. There-
fore, it is better to review the influence of each experiment 
on the model function (coefficients). The distance Cook is 

defined as the distance between the estimation vector β̂  

and the estimation vector )(
ˆ

i−β which do not take into   
account the i-th experiment 
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The experiment i is considered of abnormal influences 
when their δi is greater than 1. 

7) Studentized residual (t) is the quotient resulting from 
the division of a residual by an estimation of its standard 
deviation 

 
ii

ii
i

hMSE

YY
t

−⋅
−=

1

)()( mod xx
. (32) 

When N is large, the studentized residuals should be 
concentrated in the range [-2; 2]. High values may indi-
cate abnormally high residuals. 

The ANOVA and the adjustment coefficients allow 
evaluating the quality of the model. These tools require an 
additional cost of (N – p) experiments compared to the 
calculation of a model requiring p experiments. There is 
therefore a compromise: possibility to evaluate the quality 
of the model or minimization of the effort for model cal-
culation. 



III.  RSM APPLIED ON SMES DEVICE MODELING  

A. SMES Geometry Description and Loads 

The analyzed SMES device is shown in Fig. 1 [11]. For 
the shape of the coil, a modular toroid coil was chosen, 
consisting of solenoids connected in series and symmetri-
cally arranged. This geometry can affect the size of SMES 
device, but the manufacturing process and feasibility are 
favored [2]. 

Each solenoidal coil is realized by NbTi superconductor 
(with Cu matrix) whose operating temperature is low    
(4.2 K), using liquid helium with all the implications of 
this extremely low temperature [4], [6], [8]. The specifica-
tions of such type of superconductor are presented in [3]. 

The basic dimensions are the mean diameter of modular 
toroid D = 142 mm, the coil inner diameter d and the coil 
thickness g. The number of solenoid modules is n = 8 and 
the cross section of the coil is S = 128 mm2. According to 
specifications presented in [7], the radius of superconduc-
ting wire r = 0.2 mm and the thickness of carcass                
p = 4 mm.  

The current density in superconductor was taken            
j = 381.548 MA/m2, corresponding to a current I = 75 A. 
According to specifications presented in [5], the critical 
current density of NbTi superconductor at T = 4.2 K and 
Blim = 7 T is jc = 530 MA/m2. 

Two main parameters characterize the geometric torus 
shape: the coil inner diameter ratio α and the coil thick-
ness ratio β.  

They were chosen in [8] to optimize the storage capa-
city of a SMES device with toroidal coil 
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The study domain is limited by a few constraints on 
position (Fig. 3). 
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where α≤=α 035.0min  (35) 

is in accord with manufacturing possibilities [7], (αmax, 
βmin and βmax are free), 

 ),(),( mindist βα−=βα eeg  (36) 

does not allow a distance e between two carcasses of sole-
noids less than emin = 5.425 mm and 

 maxdiam ),(),( DEg −βα=βα  (37) 

that does not allow a total diameter of the modular toroid 
coil greater than Dmax = 230 mm [7]. 
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Fig. 1. Geometry of modular toroid coil [11]. 
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B. Modeling of depth of 2-D Planar Model by RSM 

The numerical simulations can be considered virtual 
experiments in which the studied object does not physical-
ly exist but its physical properties can be numerically cal-
culated.  

The virtual experiments are exempted from measure-
ment errors being governed only by numerical errors (type 
of solving method, mesh characteristics, mathematical 
formulation and accuracy of numerical data). 

The inductance Lc of the circular cross section toroid, 
with thin winding (g << d, D) (Fig. 2a), is [1]:  
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The earlier 2-D FEM model created in FEMM software 
describes a rectangular cross section toroid (Fig. 2b) [6], 
[9] whose inductance Lr can be calculated by [17]: 
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Under the assumption of the equality between the in-
ductances of the complete circular cross section toroid Lc 
and of the rectangular cross section toroid Lr 

 rc LL = , (43) 

was derived the depth parameter describing the depth of 
the planar model. In a preliminary step of the research of 
SMES device [7], for D = 300 mm and d = 0.15 mm        
(α = 0.5), it appears like a linear function of d 

 
Fig. 2. Circular cross section toroid (a), 

         rectangular cross section toroid (b). 



 ddepth ⋅= 766.0 . (44) 

For D = 142 mm and a feasible range of d (α < 0.5) the 
same relationship was used in 2-D FEM modeling, alt-
hough an insignificant increase of the factor 0.766 can be 
observed with decreasing of ratio α. 

The equivalence of the inductances does not take into 
account the leakage flux. Therefore a 3-D model of real 
geometry (Fig. 5) was realized using ANSYS software to 
improve the approximation (44). 

Given the breadth of a 3-D simulation, reaching 
working times up to hours compared to working times of 
seconds order for a 2-D simulation, a new 2-D FEM 
modeling equivalent to 3-D modeling will be developed.  

The magnetic field energy as result of 2-D simulation 
Wm_2-D is computed by multiplying the magnetic field 
energy per depth unity wm_2-D by the parameter depth 

 depthwW ⋅= D-m_2D-m_2 . (45) 

Imposing the equality of the magnetic field energies in 
2-D and 3-D simulations, a new value depth’ for depth of 
2-D planar model can be derived 
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The inductance of SMES device can be evaluated by 
the relationship 
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It can be compared with the value done by 3-D FEM 
modeling, identical to the value done by 2-D FEM 
modeling, based on the new parameter depth’ 
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For each 3-D simulation, an equivalent 2-D simulation 
can be developed. To generalize the new 2-D FEM 
modeling for the ranges of factors α and β, a set of 3-D 
simulations are performed.  

The runs on a PC with 1.5 MB RAM and 1.83 GHz 
processor frequency take more than 2 hours per 
simulation. Therefore, the number of the numerical expe-
riments was limited to N = 10 for different levels of the 
factors α and β, adding a new one for testing of results. 

The set of chosen experiments form a Simplex Lattice 
Design (P1 - P6) augmented with the axial points (P7 - P10) 
[14] for a better coverage of the study domain (Fig. 3). 

Based on the results of 3-D simulations, a polynomial 
regression of second order is proposed for depth 
parameter depending on factors α and β:  

2
22

2
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The estimation of the coefficients is made by the least 
squares criterion 

 
 

Fig. 3. Feasible domain defined by the constraints on position and the 
experience points (blue and red). 
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C. Numerical simulations 

The perfect diamagnetism was simulated by conside-
ring the value of relative permeability of the superconduc-
tor close to zero [6]. The value µr = 10-7 is enough small 
for expulsion of magnetic field from superconducting do-
main (Fig. 4). Based on the symmetries, the sixteen-th part 
of the geometry was modeled to increasing the accuracy 
of the results. The mesh was realized using about 30000 
nodes and 60000 triangular elements.  

Commands files have been created using LUA scrip-
ting language. The zero tangential component of magnetic 
field strength was considered for the edges forming a  

 
Fig. 4. Distribution of magnetic flux density for testing point P11,                         

2-D FEMM, α = 0.22, β = 0.07. 

 
Fig. 5. Distribution of magnetic flux density for testing point P11,                         

3-D ANSYS, α = 0.22, β = 0.07. 
 



sharp angle and zero magnetic vector potential, for the 
curve edge. 

The MVP-edge based formulation has been employed 
for the analysis of static magnetic field of the 3-D coil, 
using the same simulated diamagnetism. Based on the 
symmetries, the thirty-two-th part of the geometry was 
modeled [9]. 

Commands files have been created using APDL 
(ANSYS Parameter Design Language). The mesh was 
realized using about 500000 nodes and 400000 tetrahedral 
elements, being limited by hardware resources. The flux 
normal conditions have been considered for the sides 
forming a sharp angle and the flux parallel conditions, for 
the others (Fig. 5). 

IV.  RESULTS AND CONCLUSIONS 

The results of the N = 10 numerical experiments for 
parameter depth’ are presented in Table I adding a new 
one in postprocessing step (P11), for testing of regression 
model. 

The estimation of the vector of coefficients is 
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The results of ANOVA and the adjustment coefficients 
are presented in the Tables II–IV. The adjustment 
coefficients (Table II) show the descriptive and predictive 
power of the quadratic model. 

The analysis of the distances of Cook (Table III) shows 
that about all the experiences have normal influences, 
excepting the point P1 for which δ > 1. The studentized 
residuals are normal, higher for the point P4. 

The probability that the variance due to the regression 
will be significantly different from the residuals is 
0.99999456 (Tables IV). The model can be considered of 
best quality, since there is more than 99% chance that they 
explain the variations in the responses. 

In Fig. 6 is presented the quadratic regression for depth 
of 2-D FEM planar model compared to approximation 
(44) and to numerical experiments. It is found that the 
factor α has an important influence, as the (44) suggests. 
The model indicates a strong interaction between the 
factors, expecting significant variations in the directions α 
and β in the same time, so that using this model is 
justified.  

For the lowest values of the factor α or of the factor β, 
the model agrees enough well with (44). The lowest va-
lues for α imply the invariance of depth parameter 
regardless the values of β. That means that the magnetic 
field energy and the inductance of devices of little inner 
diameter do not depend on the coil thickness.  

In Table V are presented the values of the inductance 
done by old 2-D FEM model (L), by 3-D FEM model (L’) 
and by new 2-D FEM model (L’’ ). The relative errors 
related to 3-D results are computed resulting average    
errors of 30% for L, respectively, 3% for L’’ .  

TABLE I. 
RESULTS OF 3-D NUMERICAL EXPERIMENTS 

Experience points α β depth’ [mm] 
P1 0.035000 0.024573 4.304607 
P2 0.035000 0.140000 6.332778 
P3 0.035000 0.250000 7.400906 
P4 0.196337 0.183522 32.354933 
P5 0.357674 0.087537 48.457262 
P6 0.196337 0.034660 24.789312 
P7 0.142558 0.125433 23.737578 
P8 0.088779 0.077000 13.320104 
P9 0.088779 0.187680 16.763830 
P10 0.250116 0.106485 36.884541 
P11 0.220000 0.070000 31.418055 

TABLE II. 
ADJUSTMENT COEFFICIENTS  

R2 [mm2] 0.998883 
Ra

2 [mm2] 0.997491 
σ̂ [mm] 0.729933 
PRESS [mm2] 34.774314 
Q2 [mm2] 0.981802 

TABLE III. 
DISTANCES OF COOK AND STUDENTIZED RESIDUALS 

Experience points δi ti 
P1 3.389975 1.380130 
P2 0.647540 -1.611477 
P3 0.236433 0.424119 
P4 1.470154 -1.830231 
P5 0.330639 0.421181 
P6 1.329358 -1.408434 
P7 0.095457 1.318073 
P8 0.001477 -0.173564 
P9 0.020352 0.680271 
P10 0.005493 0.329613 

TABLE IV. 
RESULTS OF ANOVA  FOR QUADRATIC REGRESSION 

Source of 
variation DOFs 

SSR, SSE, 
SST 

[mm2] 

MSR, MSE, 
MST 

[mm2] 
Fobs 

Regression   6-1=5 1908.710 381.742 716.479 
Residual 10-6=4 2.131     0.533 Probability 
Total 10-1=9 1910.844 212.316 0.99999456 

TABLE V. 
INDUCTANCES IN OLD AND IN NEW 2-D FEM MODELS AND IN 3-D 

MODEL AND RELATIVE ERRORS RELATED TO 3-D FEM MODEL 

Exp. 
pts. 

L 
[mH] 

L’ 
[mH] 

L’’  
[mH] %100⋅

′
′−

L

LL  %100⋅
′

′−′′
L

LL  

P1 1.803 2.038 1.908 -11.56 -6.38 

P2 4.804 7.992 8.888 -39.88 11.22 

P3 5.685 11.051 10.906 -48.56 -1.31 

P4 75.893 114.980 117.332 -34.00 2.05 

P5 199.497 248.480 248.062 -19.71 -0.17 

P6 54.526 63.292 64.391 -13.85 1.74 

P7 43.054 65.908 63.638 -34.68 -3.45 

P8 18.621 25.685 25.896 -27.50 0.82 

P9 21.727 37.718 36.741 -42.40 -2.59 

P10 107.595 145.874 145.056 -26.24 -0.56 

P11 80.583 105.799 102.669 -23.83 -2.96 

 
This 3% translates in fact the 3-D numerical errors. The 

11-th 3-D simulation validates the quadratic regression, 
committing an error less than 3%. 



 
Fig.6. Depth of 2-D FEM model: depth (gray), depth’ (blue points) and 

depth’’ (rainbow). 
 

The Fig. 7 illustrates the comparison of three values of 
the inductance for feasible ranges of factors α and β. 

The new 2-D FEM model indicates an underestimation 
of the depth of the earlier 2-D planar modeling and conse-
quently, of the magnetic field energy and of the induc-
tance for devices with large inner diameter, when the lea-
kage flux increases. The proposed model can improve the 
results of optimizations of the SMES device performed in 
[10], [11]. 
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