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Abstract — The paper proposes the determination of the
inductance of a Superconducting Magnetic Energy Stage
(SMES) device with modular toroid coil based on aew 2-D
FEM modeling using the response surface methodology
(RSM) applied on 3-D FEM modeling. An earlier 2-D EEM
modeling of a SMES device created in FEMM softwares
based on the assumption of the equality between theduc-
tances of the complete circular cross section tombiand of
the rectangular cross section toroid, providing amapproxi-
mation for the depth of planar model which does notake
into account the leakage magnetic flux. Therefore &-D
model of real geometry was realized using ANSYS dufare
to improve this approximation. Imposing the equaliy of the
magnetic field energies in 2-D and 3-D simulationsa new
value for depth of 2-D FEM planar modeling is deried as
polynomial regression of second order of the 3-D sallts,
based on two factors characterizing the geometricotus
shape: the coil inner diameter ratio and the coil hickness
ratio. The application of analysis of variance (AN&A) and
the computation of some adjusting coefficients pray the
descriptive and predictive power of this model. Thenduc-
tances of different configurations of SMES device atived
from the new 2-D FEM modeling are compared to those
based on the earlier 2-D FEM modeling and on the B
FEM modeling. The results indicate an underestimatin of
the depth of the earlier 2-D FEM planar modeling an con-
sequently, of the magnetic field energy and of the@ductance
for SMES devices with large inner diameter, when ta leak-
age magnetic flux increases. The proposed model cam-
prove the results of optimizations of the SMES deuk per-
formed in previous papers.
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I.  INTRODUCTION

parameters. Based on analytical calculation, correktio
between different dimensions have been derived.

In [10] and [11] are done optimized solutions of modu-
lar toroid coil geometry of a 21 kJ SMES device using
design of experiments (DOE) and FEM.

In [12] is proposed the improving of the earlier 2-D
modeling used in [6] by using polynomial regression
models of first degree for the depth of planar modeling.
This is based on equivalence of magnetic field energies
between 2-D and 3-D simulations, using the response sur-
face methodology (RSM) applied on 3-D FEM modeling.

The preoccupations to find a best modeling have been
carried out and this paper proposes a new 2-D modeling
based on a regression polynomial model of second degree
for the depth parameter.

In the first part are presented some basic concepts in
RSM concerning the polynomial models, the ways of es-
timation of their coefficients and the technique of analysis
of variance (ANOVA) with some adjusting coefficients as
tools for testing of the validity of the models and ép-
preciating their quality.

In the second part is described the methodology of ob-
taining of the second order model for the depth of 2-D
FEM planar modeling. Based on the new model, the in-
ductance for different configurations of the SMES devic
is determined and compared to those based on the earlier
2-D FEM modeling and on the 3-D FEM modeling. The
ANOVA is applied and some adjusting coefficients are
computed for statistical tests.

Il. RESPONSESURFACEMETHODOLOGY

A. Basic Concepts in RSM
The response surface methodology (RSM) is a useful

The design and the optimization of the Superconductingechnique for modeling and analysis of the response of a
Magnetic Energy Storage (SMES) devices is a topic ofystem influenced by a set of independent factors. The
permanent interest [1] - [8], many studies being devedesign of experiments (DOE) is essentially based on the

loped during a research project [7].

creation and exploitation of the models of the response

The numerical simulations help to preview the best sosonsisting of analytical relationship describing the arari
lutions with minimum costs. In [6] and [9] were createdtions of the response versus to the variation of therf&c
2-D and 3-D numerical models of a 21 kJ modular toroid13] - [16].

coil system, using finite element method (FEM) in FEMM  ysually, the RSM problems use polynomial models of
and ANSYS software. The results shown that a 2-D modejrst- or second-order derived as results of a sesfeex-

under well-chosen assumptions can be as accurate age¥iments with different values for the factors.

3-D model of the real geometry, which is much more ex-

pensive in terms of work time and hardware resources.

For a set ok factors, the model function (called regres-
sion) Ymeg @pproximates the value of responéefor any

In [8] was established a geometric criteria for pregizi combination of the factors by matrix-form relationship

of toroidal coil for magnetic energy storage in order t
optimize the storage capacity, choosing two geometric

Ymod(x) = f(X) [ﬂv



where X = (% X .o )T

)

is the coordinates vector of an experience point P,
FOX) = (X X XX oo Xy X oo X X oo Xy %) (3)

is a line vector whose elements contain the vabfidse k
factors and theirs possible combinations by mutuaii-
plications up to second order and

B=@0,b,...0 by.. by .. by b b)) (4

is the vector of the correspondents coefficientih y
elements.

1) The first-order model without interactio®es not
take into account the interaction between the facteor
two factors denoteg, = x andx, =y, we havep = 3 and

x=(xy)', fx)=@Axy), f={hbb). (5

The values of the model function can be also writte

(6)

The coefficiently is the value of model function in the
origin point (0 0 ... 0) and the vectob indicates the di-
rection of the greatest increase of the model fanct

2) The first-order model with interactiortakes into
account the interactions between the factors. Wworfac-
tors in this casp = 4 and

f(x)=Axyxy), B=(bb,by,)". @)

3) Second-order modelmake appear quadratic terms
andp=6

f(x)= (1XyXyX2 yz), B=(b b, bnbzz)T- C))

The values of the model function are deduced fram m
trix form equation:

Ymod(x) = bo + XT b ’ b= (bl bz)T .

Y,o0a(X) =by + x" b+ xT (B [k 9)

where B is a quadratic matrix whose diagonal element
are the coefficients of the two-power terms and thersthe

elements correspond to the terms of interactionsemst
the factors

{ b
b,/2

This model is only used in the RSM and it requiaes
reasonable number of experiments for its calculatio

4) Greaterthan two order modelénply an important
number of experiments, an uncertain approximatiot a
the difficulty to understand the model variationsd ao
use the mathematical relationship.

B

o W

b2 2

B. Estimation of Coefficients of Polynomial Models

For a series oN experiments, the value of the model

function in any experience point®;) = R (x, y)) is

Y, (%)= f(x)[B 1<i<N. (11)

The vectorsy andY,oq bring together all the responses
respectively their models and a new matrix fornatieh-
ship can be written [13]

Y =(Y(x) .Y (x) T (12)
Ymod = (Ymod(xl) "'Ymod(XN)) T: x U” 1 (13)
where X =(f(x)... F(xy)) T (14)

is the design matrix built from tHé experience points.

If N = p experiences are performed, all thecoeffi-
cients can be uniquely determined by the systefime&r
equations

Y=XI[p. (15)

The model passes exactly through the experiencespoi

and the matriX is saturated (square).

If N <p, the above system is underdetermined, so one
must always havil > p.

For the most common situations whéde> p, the sys-
tem (15) is overdetermined and there is enoughr-nfo
mation in the experimental data to estimate a wiglue
for g such that the model best fits the response. I thi
case the model cannot pass exactly through thaierpe
points, but it commits an adjustment error in eaicthese
points.

So there is an error vecter(residue) nonzero. The co-
efficients must be estimated by the minimizatiogivaen
criterion. The method of least squares is the kiestvn
and most used in the polynomial approximation.

The matrix-form relationship linking the respongsela

the model function based on the estimation veﬁbtsr
Y=XB+e. (16)

The objective is the calculation of vectgfrr such that
the vectore to be minimized. The least squares criterion

St'ran::,lates this requirement by an equivalent object

N N
i =2 (V) =Yoo, )~ min - (17)
i=1 i=1
The estimation vecto/} results
p T L T
p=(x" ) X Ty (18)

C. Analysis of Variance of the Model and Adjusting
Coefficients

The ANOVA can be used to test the validity of the
model function based on the relationship [13]
Y'Y =Yoo Vinoa + &' (&

mod

(19)

The left terms, called the total sum of the squéB&S),
is composed of the sum of squares due to regre(S®R
and of the sum of errors squar8S$§, so

mod

SST= SSR+ SSE (20)



The variances (the mean squares) of the resporeses, 4) Predictive Residual Sum of SqQu{RRES$ is de-
gression and residues are deducted dividing thes @afm fined using the diagonal elemetifs 1 <i <N, of the Hat
squares by the corresponding degrees of freedonrYDO matrix

-1
MST:£I—, MSRzﬁ, MSE:ﬁ (21) H :XE(XTD() X', (28)
N p N-p
In about all cases, the model contains a conseant t N (Y(Xi) _Ymod(xi))2
which corresponds to coefficieb§, which is the average PRESS= Z (1_ )2 (29)
of responses = hy

N This coefficient is not a measure of adjustment,rau
:lZy(xi) =Y, V= (7_“7) T (22) ther an estimation of the predictive power of theded. It
N = can be used to compare the models between them. One
always haRESS SSE

Since this component is of no interest in ANOVAisit 5) Coefficient @ is very similar toR, often called

usually suppressed. Consequently, the regressioRsDO,,

and total DOFs decrease by 1. Thus predictive R
SST,, -PRESS
SST SSR 2oZmom e 30
MST_O = N_— ) MSR_O = H . (23) Q SSTm ( )

It usually varies between 0 and 1. It can be negdtr

ry poor models. The values close to 1 designates

properly-fitting to experiments models.

MSR MSR. The coefficientsR? and Q” are thus two measures of

obs = e OF Fopg=———2. (24)  goodness of fit: the first is an over-estimationilatihe
MSE MSE, second is an underestimatid®.is descriptive, measuring

The MSR(or MSR,) can be considered of the same or-IN€ relationship between the model function and the

der as theMSE (or MSEy) if the ratioFoy is less than a €SPONse in the initial experience points, wifeis more

statistical threshold. The null hypothesig Feans that Predictive, measuring the ability of the model fiie to

= 0. Under this assumptioffss is an observed value of predict the response in unknown experience points.

a variableF of Fisher-Snedecor type, with(or p— 1)and 6) Distance of Coold)

(N—p) DOFs. The hypothesisghinust be rejected at level  In some cases, some values of the response may be

Is then performed the Fisher-Snedecor test b¥e
calculating the ratiéops

A when the probabilitf’(F > Fosd < 2. aberrant even if their residues are not importahere-
The quality of a model can be evaluated by adjustsne fore, it is better to review the influence of eactperiment
coefficients: on the model function (coefficients). The dista@mok is

1) Global variance of regressiafs’) can be estimated defined as the distance between the estimatiornw,éct

by MSE. The model is the better fit to the experimental L - . .
data asVISEis low and the estimation vectgy_, which do not take into

account the-th experiment
6° =MSE (25)

. o) s e i) b i)
2) Coefficient of determinatio(R?) is the ratio of the 5 = B b (31)
variance explained by the regression and the \egiarf : (p+1)[|MSE '

responses, both corrected by the average Yalue The experiment is considered of abnormal influences
T _ when theirg; is greater than 1.
= _TY _D’ -SSR, _ SST,, ~ SSE, . (26) 7) Studentized residuét) is the quotient resulting from
Y ¥-y Y SST, SST, the division of a residual by an estimation ofstandard

This coefficient takes values between 0 and 1. ldeva deviation
close to 1 indicates a good model with a very good
descriptive power. t :M

3) Adjusted coefficient of determinati¢R,?) has the VMSEL/1-h
same signification aB but it is defined in relation to co-
rresponding DOFs

Yy Ty

R2 — _mod mod

(32)

When N is large, the studentized residuals should be
concentrated in the range [-2; 2]. High values rimetdj-
SST, _SSE, cate abnormally high residuals.

N-1 N-b The ANOVA and the adjustment coefficients allow
R’ == N°P (27)  evaluating the quality of the model. These tootgiie an
SST, additional cost of N — p) experiments compared to the
N-1 calculation of a model requiring experiments. There is
It can take negative values if tRé is close to 0. Due to therefore a compromise: possibility to evaluateqhality
the consideration of DOFs one always of Itht<_e model or minimization of the effort for mddel-
culation.




Ill. RSMAPPLIED ONSMESDEVICE MODELING

A. SMES Geometry Description and Loads

The analyzed SMES device is shown in Fig. 1 [1d}. F
the shape of the coil, a modular toroid coil wassem,
consisting of solenoids connected in series andrstni-
cally arranged. This geometry can affect the sSfZ8MES
device, but the manufacturing process and feasililie
favored [2].

Each solenoidal coil is realized by NbTi supercaridu

(with Cu matrix) whose operating temperature is low

(4.2 K), using liquid helium with all the implicats of
this extremely low temperature [4], [6], [8]. Theesifica-
tions of such type of superconductor are presantgg].

The basic dimensions are the mean diameter of rapdul

toroid D = 142 mm, the coil inner diametdrand the coil
thicknessg. The number of solenoid modulesiis 8 and
the cross section of the coil &= 128 mm. According to
specifications presented in [7], the radius of sopeduc-
ting wire r
p=4mm.

The current density in superconductor was take
j = 381.548 MA/M, corresponding to a curreht 75 A.
According to specifications presented in [5], th#iaal
current density of NbTi superconductorTat 4.2 K and
Bim = 7 T isj. = 530 MA/nf.

e/2 p ‘ »
0 | | [s/2)] |n/2
[ " g ” »
D2,
‘ E/2
Fig. 1. Geometry of modular toroid coil [11].
rO—D_d—g_D[él_a— j, h:§:£’ ¢:E[,(39)
2 2 g PBD n

E(a,B)=D+d+2g+p=DI(1+a+2B)+p. (40)

0.2 mm and the thickness of carcass

B. Modeling of depth of 2-D Planar Model by RSM

N The numerical simulations can be considered virtual
experiments in which the studied object does ngsichl-

ly exist but its physical properties can be nunadiyoccal-
culated.

The virtual experiments are exempted from measure-

Two main parameters characterize the geometric torynent errors being governed only by numerical erfiyrse

shape: the coil inner diameter ratioand the coil thick-
ness ratig.

They were chosen in [8] to optimize the storageaeap
city of a SMES device with toroidal coil

d
o=—,

o' P=

g
D (33)

of solving method, mesh characteristics, mathemilatic
formulation and accuracy of numerical data).

The inductance.. of the circular cross section toroid,
with thin winding @ <<d, D) (Fig. 2), is [1]:

L, :u—z"[D— D2—d2] (41)

The study domain is limited by a few constraints on The earlier 2-D FEM model created in FEMM software

position (Fig. 3).

amin sasa max
_<B<
Bmm - B - Bmax (34)
Jais (,B) <0
Jaiam(@,B) <0
where O = 0.0355a (35)

is in accord with manufacturing possibilities [{hmax
Bmin andPmay are free),

gdist (G, B) = emin - 6((1, B)

does not allow a distanegbetween two carcasses of sole-
noids less thaay,, = 5.425 mm and

gdiam(a1B) = E(G1B) - Dmax

that does not allow a total diameter of the modtdenid
coil greater tha o = 230 mm [7].

(36)

@7

h
0 2P
e(a,B)=2@8in=0r,—p- , (38)
2 tan%

describes a rectangular cross section toroid &y [6],
[9] whose inductanck, can be calculated by [17]:

+
L, =Ho Cdepthln D +d .
2n D-d
Under the assumption of the equality between the in-
ductances of the complete circular cross section tdroid
and of the rectangular cross section totgid

(42)

L. =L,, (43)
was derived thelepth parameter describing the depth of
the planar model. In a preliminary step of the redeafc
SMES device [7], foD = 300 mm andd = 0.15 mm
(o =0.5), it appears like a linear functiondbf

|
D

(a)

3

| | i
,,#,,717,7T,,

\ L

£
Fig. 2. Circular cross section toroia) (
rectangular cross section tordil (

)

depth

hd




depth=0.766l[d . (44) -

Py P,

For D = 142 mm and a feasible rangedofo. < 0.5) the >\\
same relationship was used in 2-D FEM modeling, alt 03
hough an insignificant increase of the factor 0.766 can k
observed with decreasing of ratio

The equivalence of the inductances does not take in
account the leakage flux. Therefore a 3-D model of ree
geometry (Fig. 5) was realized using ANSYS software
improve the approximation (44). P, Op. P

Given the breadth of a 3-D simulation, reaching 0.1 §
working times up to hours compared to working times o', (0. B)<0 OFy o'u )

. . S dist \* y Pﬁ
seconds order for a 2-D simulation, a new 2-D FENM P, | 5l

modeling equivalent to 3-D modeling will be developed.

The magnetic field energy as result of 2-D simulatior
Wi 2.0 is computed by multiplying the magnetic field O OLpin

energy per depth unity,_,.p by the parametetepth

0.2

Coil thickness ratio, 5

& diam ((}“ [5) <0

0.0 L, 0.1 02 0.3 0.4
Coil inner diameter ratio, o

Fig. 3. Feasible domain defined by the constraintposition and the

W, 25 =W 20 [depth. (45) experience points (blue and red).
Imposing the equality of the magnetic field energies ZN:(deptH'(ori ,B,) - deptH(a,,B,))° — min. (51)
2-D and 3-D simulations, a new valdepth’for depth of =

2-D planar model can be derived
C. Numerical simulations
W, oo =W, 55 =W, ,p [Hept’ :Mmeph', (46) The perfect diamagnetism was simulated by conside-
m- m- m- depth ring the value of relative permeability of the suqueduc-
tor close to zero [6]. The valug g 10 is enough small

W [Hepth for expulsion of magnetic field from supercondugtito-
deph’ = =22 . (47)  main (Fig. 4). Based on the symmetries, the sixthepart
Wmfz_D of the geometry was modeled to increasing the acgur

. . of the results. The mesh was realized using abod0@
The inductance of SMES device can be evaluated bBysdes and 60000 triangular elements.

the relationship Commands files have been created using LUA scrip-

20W. ting language. The zero tangential component ofnaiig
[=—_m2 (48) field strength was considered for the edges forraing

Fig. 4. Distribution of magnetic flux density fasting point B,

It can be compared with the value done by 3-D FEN
modeling, identical to the value done by 2-D FEM
modeling, based on the new parameispth’

- 2wvm73D - ZENn'LzD (49)

L |2 |2

For each 3-D simulation, an equivalent 2-D simolati
can be developed. To generalize the new 2-D FEM - "
modeling for the ranges of factossand, a setof 3-D 2-D FEMM,q.=0.225=0.07. ANSYS
simulations are performed.

The runs on a PC with 1.5 MB RAM and 1.83 GHz ==~

processor frequency take more than 2 hours pe ,mt)
simulation. Therefore, the number of the numereqe-
riments was limited toN = 10 for different levels of the

factorsa andp, adding a new one for testing of results.

The set of chosen experiments form a Simplex Lettic
Design (R - Ps) augmented with the axial points;(#PPyg)
[14] for a better coverage of the study domain.(B)g

Based on the results of 3-D simulations, a polyr@bmi

regression of second order is proposed fiepth
parameter depending on factarandp:

depth' (a,B) =h, +ba + bR +b,ap +b,a” +b,,B°. (50) AT e
Tor Static Magnetic Analysis
The estimation of the coefficients is made by st Fig. 5. Distribution of magnetic flux density fasting point B,

squares criterion 3-D ANSYS,a =0.22,8 = 0.07.



sharp angle and zero magnetic vector potential.ther TABLE |.
RESULTS OF3-D NUMERICAL EXPERIMENTS

curve edge.

The MVP-edge based formulation has been employed| _Exgerience poin o p depth [mm]
for the analysis of static magnetic field of thé3zolil, Py 0.035000 | 0.024573]  4.304607
using the same simulated diamagnetism. Based on th EZ 8'822838 8';‘5‘8888 S'igg;gg
symmetries, the thirty-two-th part of the geometvgs B, 0.196337 | 0.183522] 32354933
modeled [9]. P 0.357674 | 0.087537] _ 48.457262

Commands files have been created using APDL Ps 0.196337 | 0.034660 24.789317
(ANSYS Parameter Design Language). The mesh was P 0.142558 | 0.125433]  23.737574
realized using about 500000 nodes and 400000 &ztrah Ps 0.088779 | 0.077000]  13.320104
elements, being limited by hardware resources. flithe P 0.088779 | 0.187680]  16.76383(
normal conditions have been considered for thesside Pic 0.250116 | 0.106485|  36.884541
forming a sharp angle and the flux parallel coodisi, for Pu 0220000 | 0.070000] _ 31.41805%
the others (Fig. 5).

TABLE Il.
ADJUSTMENTCOEFFICIENTS
IV. RESULTS ANDCONCLUSIONS

The results of theN = 10 numerical experiments for Ez[{];mz] 8'_33323?
parameterdepth’ are presented in Table | adding a new 5 [mm] 0.729933
one in postprocessing step {P for testing of regression PRESImn?] | 34.774314
model. & [mm] 0.981802

The estimation of the vector of coefficients is

TABLE lII.
-1.599 DISTANCES OFCOOK AND STUDENTIZED RESIDUALS
Experience poin 5 t;
133931 ° P, " 3.389975 | 1.380130
j=| 36514 52) : 023453 | 02113
= X ] i

77| 197824 P, 1.470154 | -1.830231
-50.903 Ps 0.330639 0.421181

Ps 1.329358 | -1.408434

-105310 P, 0.095457 | 1.318073

The results of ANOVA and the adjustment coefficgent E* 8'8%33 'g'ggoggff

are presented in the Tables II-IV. The adjustment Pg 0005493 0329613
. . . . . . 10 . .

coefficients (Table 1) show the descriptive anédictive

power of the quadratic model. TABLE IV.

The analysis of the distances of Cook (Table hivss RESULTS OFANOVA FORQUADRATIC REGRESSION
that about all the experiences have normal inflasnc SST SSE | MSR MSE
excepting the poinP; for which > 1. The studentized | Sourceof | 5qro SST MST Fobs
residuals are normal, higher for the pddat variation [mn] [mn]

The probability that the variance due to the regjoss | Regression| 6-1=5| 1908.710  381.742 716.479
will be significantly different from the residualss ?ggfiual 1109'16_'94 1921'0121 Y 212 g’fg opgggzgzge
0.99999456 (Tables IV). The model can be considefed — ) ) )
best quality, since there is more than 99% chametethey TABLE V
explain the variations in the responses. INDUCTANCES INOLD AND IN NEW 2-D FEM MODELS AND IN3-D

In Flg. 6 |S presented the quadratlc regreSS|omjﬁp’th MODEL AND RELATIVE ERRORSRELATED TO 3-D FEM MODEL
of 2-D FEM planar model compared to approximatiorf Exp. L C r LU Y
(44) and to numerical experiments. It is found the pts. | [mH] [mH [mH] | — 1006 | —— 1006
factor a has an important influence, as the (44) suggests.P. | 1.803 | 2.038 | 1.908 -1156 | -6.3¢
The model indicates a strong interaction between thH P, | 4.804 7.992 8.888 -39.88 11.22
factors, expecting significant variations in theedtionsa P; | 5685 | 11.051| 10.906 -48.56 -1.31
and_p in the same time, so that using this model is p, 75.893 | 114.980 117.33P -34.00 2.0F
justified. P, | 199.497| 248.48] 24806p  -19.71] 0.1

For the lowest values of the factoior of the facto, Ps | 54.526 | 63.292| 64.391 -13.85 1.7¢
the model agrees enough well with (44). The lowest P, | 43.054 | 65908 63.638 34.68 34E
lues for o imply the invariance of depth parameter—p [ 1g621 | 25685 25894 2750 08:
regardless the values pf That means that the magnetic———5777 T 37.718] 36.741 2240 25¢
geld etnergy antddthe |r&duct{ahnce giftr(]j_e\lgces ofelittiner P [ 107.505| 145874 145.056 624 08¢

lameter do not depend on the cotl tickness. P. | 80.583 | 105.799 102.66D  -23.83] -2.9€

In Table V are presented the values of the indeetan

done by old 2-D FEM modeLj, by 3-D FEM modell(’) . . .
and by new 2-D FEM modelL¥). The relative errors __This 3% translates in fact the 3-D numerical errdre

related to 3-D results are computed resulting gera 11-th 3-D simulation validates the quadratic regies
errors of 30% fot, respectively, 3% fok.” . committing an error less than 3%.
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Fig.6. Depth of 2-D FEM modetiepth(gray),depth’ (blue points) and
depth” (rainbow).

The Fig. 7 illustrates the comparison of three @alaf
the inductance for feasible ranges of factoesdp.

The new 2-D FEM model indicates an underestimatiorp;l

of the depth of the earlier 2-D planar modeling eodse-
quently, of the magnetic field energy and of thduicr
tance for devices with large inner diameter, whenlea-

kage flux increases. The proposed model can impiteve

results of optimizations of the SMES device perfednin
[10], [11].
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