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Abstract − The transient parameters of a system of two
non-magnetic homogenous rectangular busbars are
evaluated with finite element method and analytical
relationships. Alternative ways of computation were
adopted combining the two methods and the
corresponding results were comparatively presented.
The solid conductor characteristic has been pointed out
compared to an ideal filiform conductor.

Keywords: transient parameters, finite element method

1. INTRODUCTION

The characterization of a non-filiform circuit element
can be made, in null initial field conditions and
special boundary conditions, with the transient
parameters, depending exclusively on the element
intern structure and being the generalization of the
constant parameters of the filiform circuits: the
transient resistance r(t), the transient conductance
g(t) and, for the elements having a finite stationary
regime resistance and conductance, the transient
inductance l(t) and the transient capacitance c(t) [1].
Theirs experimental determination supposes
measurements in particular feeding regimes, which
easily offer some of them. The others can be
computed on theirs basis, using the analytical
relationships established in [1].
Considering the numerical simulation like a
substitute of the experiment, the transient parameters
of a system of two non-magnetic homogenous
rectangular busbars are evaluated with finite element
method combined with analytical relationships.

2. NUMERICAL DETERMINATION

Using FLUX 2D program developed by CEDRAT
Company and G2ELab, the transient parameters of
the busbars system in figure 1 have been determined.

Figure 1 : System of two parallels bars.

The bars system was modeled with solid conductor
components connected to the step and ramp signals via
Circuit Coupling module. The numerical transient
simulation  begins  at  the  moment  corresponding  to

θ = 10-7 time constants τ (θ = t / τ) using the minimum
time step allowed by the program (10–9 sec). At
postprocessor level the following quantities were
investigated: current i(t), voltage u(t), inductance l(t).
The current i(t) in the solid conductor is the total
current passing the conductor cross section S. Its
evaluation is computed as circulation of magnetic
field strength H on the conductor perimeter lS [5]:
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The voltage u(t) on the solid conductor results from :
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where r0 is the stationary resistance, evaluated with
resistivity ρ  (in copper) and conductor length L, Φi(t)
is the interlinked with di(t) = j(x, y, t)·dS magnetic flux
and Az is the normal on the cross section component of
magnetic vector potential (Az = 0  on x =  – a / 2).
From numerical values of the voltage and current
were directly deduced, respectively, the transient
resistance and the transient conductance and these
were used by analytical relationships to compute the
transient inductance and the transient capacitance.
The numerical simulation offers also the transient
inductance and it was use to mutually compute the
transient resistance. Comparisons between directly
numerical deduced transient parameters and those
analytically computed were made. Finally, the solid
conductor characteristic has been pointed out
compared to an ideal filiform conductor.

2.1. Transient resistance and inductance
determination at step current injection

At current step injection i(t)  = I0·1(t), for t  0, the
relationship between the transient resistance and the
transient inductance is [1] ( (t) = the Dirac function):
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For t > 0, the first equality offers the transient
resistance   at   step   current,   directly   from   the
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numerical value of voltage at step current:
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Another way to obtain the transient resistance is
using the numerical transient inductance at step
current )(UMstep_crt_N tl  offered by FLUX (total

inductance). The result was called the transient
resistance at step current from inductance:
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Mutually, we can deduce the transient inductance
from the transient resistance:
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An approximate expression is obtained using the
numerical value of inductance in stationary regime Lst

for its limit at infinity L∞ and )(step_crt_U tr  for transient

resistance:
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where the integration was performed till the moment
t =  10⋅τ, practically considered enough for transient
process stabilization. This quantity was called the
transient inductance at step current from resistance.
The evolutions of these fours quantities are
comparatively presented in figures 2, 3. It can be seen
that the numerical results are not correct for θ < 10-6.

2.2. Transient resistance and inductance
determination at ramp current injection

At current ramp injection i(t)  = t·I0·1(t), for t  0, the
relationship between the transient resistance and the
transient inductance is [1]:
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For t > 0, the first equality offers the transient
resistance at ramp current, from the derivative of the
numerical value of voltage at ramp current:
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Another way to obtain the transient resistance is
using the numerical transient inductance at ramp
current )(UMramp_crt_N tl  offered by FLUX. The result

was called the transient resistance at ramp current
from inductance:
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Mutually, we can deduce with (8) an approximate
expression of the transient inductance from the
transient resistance, using )(ramp_crt_U tr  for the last:
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This quantity was called the transient inductance at
ramp current from resistance. The evolutions of
these fours quantities are comparatively presented in
figures 4 and 5, where great errors can be remarked.

Figure 2 : Transient resistance at step current: solid line (6), dot line (7).

Figure 3 : Transient inductance at step current: solid line (FLUX), dot line (9), initial inductance: point (15).
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With (10) we can also estimate the initial inductance:
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which is a constant value, not depending of the
superior limit t up to which integration is performed.
So, the average Lin of the n = 234 integral values
corresponding to the analyzed moments can
approximate l(0+):                                                    (15)
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Comparatively, Lin is very close to )10( 7
ramp_crt_R τ−l

and )10( 7
step_crt_R τ−l . It is visible in the figures 4, 5. In

the figure 6 is shown the solid conductor characteristic
compared to an ideal filiform conductor, for which the
(10) relation contains time-invariable parameters. The
voltage at ramp current for filiform conductor is:
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Additionally, with (10) and using )(UMramp_crt_N tl  was

deduced an approximate expression called the
voltage at ramp current from inductance:
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In figure can be seen the asymptotically evolution of
both the numerical value of voltage at ramp current

)(UMramp_crt_N tu  and the voltage at ramp current from

inductance )(ramp_crt_L tu  towards the ideal values.

2.3. Transient conductance and capacitance
determination at step voltage application

At voltage step application u(t)  = U0·1(t), for t  0,
the relationship between the transient conductance
and the transient capacitance is [1]:
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For t > 0, the first equality offers the transient
conductance at step voltage, directly from the
numerical value of current at step voltage:
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The program doesn’t offer the value of capacitance
)(NUMstep_volt_ tc , so, a similar to (7) relationship can’t

be established. Mutually, we can deduce the transient
capacitance from the transient conductance:
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An approximate expression can be obtained using the
numerical value of capacitance in stationary regime
Cst  for  its  limit  at  infinity C∞  and )(Istep_volt_ tg   for

transient conductance, by analogy with (9):
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This quantity was called the transient capacitance at
step voltage from conductance. It must be noted that
Cst is established in 2.4 section of the paper, for
another feeding regime. The evolutions of the two
quantities are presented in figures 7 and 8.

2.4. Transient conductance and capacitance
determination at ramp voltage application

At voltage ramp voltage u(t)  = t·U0·1(t), for t  0, the
relationship between the transient conductance and the
transient capacitance is [1]:

[ ])(d)()(1)0()( 00

0

0 tctgUttgtcUti
t

+⋅=







+⋅= ∫

ε−
+

 (22)

For t > 0, the first equality offers the transient
conductance at ramp voltage, from the derivative of
the numerical value of current at ramp voltage:
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With (22) we can estimate the initial capacitance:
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which is a constant value, not depending of the
superior limit t up to which integration is performed.
So, the average Cin of the n = 234 integral values
corresponding to the analyzed moments can
approximate c(0+):                                                (25)
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Mutually, we can deduce an approximate expression
of the transient capacitance from the transient
conductance, using )(Iramp_volt_ tg  for the last:
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This quantity was called the transient capacitance at
ramp voltage from conductance. The evolutions of
the two transient parameters are presented in figures
9 and 10. In figures 10 and 8, the initial capacitance
Cin is also visible, close to both )10( 7

Gramp_volt_ τ−c  and

)10( 7
Gstep_volt_ τ−c .

The expression (26) allows the approximation of
stationary regime capacitance Cst, required by (21).

)10(Gramp_volt_st τ≈ cC (27)

In fig. 11 is shown the solid conductor characteristic
compared to an ideal filiform conductor, for which
the (22) relation contains time-invariable parameters.
The current at ramp voltage for filiform conductor is:
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Figure 4 : Transient resistance at ramp current: solid line (11), dot line (12).

Figure 5 : Transient inductance at ramp current: solid line (FLUX), dot line (13), initial inductance: point (15).

Figure 6 : Voltage evolution at ramp current: solid line (FLUX), dot line (17), dash line (16).

Figure 7 : Transient conductance at step voltage: solid line (19).
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Figure 8 : Transient capacitance at step voltage: dot line (21), initial capacitance: point (25).

Figure 9 : Transient conductance at ramp voltage: solid line (23).

Figure 10 : Transient capacitance at ramp voltage: dot line (26), initial capacitance: point (25).

Figure 11 : Current evolution at ramp voltage: solid line (FLUX), dash line (28).
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Figure 12 : Magnetic field pattern (up), current density distribution (down) at θ = 10-2, 10-1, 10, for step current.
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compared to the numerical value of current at ramp
voltage )(NUMramp_volt_ ti . His asymptotically evolution

towards the ideal values can be remarked.
Using visualization facilities offered by FLUX
postprocessor, in the figure 12 are presented the
magnetic field pattern and the current density
distribution in a little part of the studied domain at
three moments of transient process corresponding to
θ = 10-2, θ = 10-1, θ = 10, for step current injection.

4. CONCLUSIONS

The transient parameters – resistance, conductance,
inductance and capacitance – of a system of two non-
magnetic homogenous rectangular busbars were
evaluated with finite element method and analytical
relationships. Numerical simulations in particular
feeding regimes had easily offered some of them and
the others could be computed using analytical
relationships. Comparisons between directly
numerical deduced transient parameters and those
analytically computed show acceptable results at step
current injection excepting the beginning of the
transient process where the numerical simulation was
strongly affected by the unavoidable coarse time
mesh. Great errors were founded at ramp current

when operators like integrals or derivatives were
applied to the interpolated numerical signals. The
solid conductor characteristic has been pointed out
compared to an ideal filiform conductor.
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